skip to main content


Search for: All records

Creators/Authors contains: "Heo, Lim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract ColabFold offers accelerated prediction of protein structures and complexes by combining the fast homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold’s 40−60-fold faster search and optimized model utilization enables prediction of close to 1,000 structures per day on a server with one graphics processing unit. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-source software available at https://github.com/sokrypton/ColabFold and its novel environmental databases are available at https://colabfold.mmseqs.com . 
    more » « less
  3. Abstract

    Protein structure refinement is the last step in protein structure prediction pipelines. Physics‐based refinement via molecular dynamics (MD) simulations has made significant progress during recent years. During CASP14, we tested a new refinement protocol based on an improved sampling strategy via MD simulations. MD simulations were carried out at an elevated temperature (360 K). An optimized use of biasing restraints and the use of multiple starting models led to enhanced sampling. The new protocol generally improved the model quality. In comparison with our previous protocols, the CASP14 protocol showed clear improvements. Our approach was successful with most initial models, many based on deep learning methods. However, we found that our approach was not able to refine machine‐learning models from the AlphaFold2 group, often decreasing already high initial qualities. To better understand the role of refinement given new types of models based on machine‐learning, a detailed analysis via MD simulations and Markov state modeling is presented here. We continue to find that MD‐based refinement has the potential to improve AI predictions. We also identified several practical issues that make it difficult to realize that potential. Increasingly important is the consideration of inter‐domain and oligomeric contacts in simulations; the presence of large kinetic barriers in refinement pathways also continues to present challenges. Finally, we provide a perspective on how physics‐based refinement could continue to play a role in the future for improving initial predictions based on machine learning‐based methods.

     
    more » « less
  4. Refinement is the last step in protein structure prediction pipelines to convert approximate homology models to experimental accuracy. Protocols based on molecular dynamics (MD) simulations have shown promise, but current methods are limited to moderate levels of consistent refinement. To explore the energy landscape between homology models and native structures and analyze the challenges of MD-based refinement, eight test cases were studied via extensive simulations followed by Markov state modeling. In all cases, native states were found very close to the experimental structures and at the lowest free energies, but refinement was hindered by a rough energy landscape. Transitions from the homology model to the native states require the crossing of significant kinetic barriers on at least microsecond time scales. A significant energetic driving force toward the native state was lacking until its immediate vicinity, and there was significant sampling of off-pathway states competing for productive refinement. The role of recent force field improvements is discussed and transition paths are analyzed in detail to inform which key transitions have to be overcome to achieve successful refinement.

     
    more » « less
  5. Abstract

    Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine‐learning based models from AlphaFold with state‐of‐the‐art physics‐based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.

     
    more » « less
  6. Abstract

    Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation‐based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat‐bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near‐experimental accuracy.

     
    more » « less
  7. Abstract

    Protein structure refinement remains a challenging yet important problem as it has the potential to bring already accurate template‐based models to near‐native resolution. Refinement based on molecular dynamics simulations has been a highly promising approach and the performance of MD‐based refinement in the Feig group during CASP12 is described here. During CASP12, sampling was extended well into the microsecond scale, an improved force field was applied, and new protocol variations were tested. Progress over previous rounds of CASP was found to be limited which is analyzed in terms of the quality of the initial models and dependency on the amount of sampling and refinement protocol variations. As current MD‐based refinement protocols appear to be reaching a plateau, detailed analysis is presented to provide new insight into the major challenges towards more extensive structure refinement, focusing in particular on sampling with and without restraints.

     
    more » « less